
If you ever need to find out what members a function or class has, you can use the following trick
(this example uses the "json" class):

Which will output the following:

Discover Members of a
Function/Class

New unknown script package I have never used before

import json

Find out all members in this package

for item in dir(json):

	print item

JSONDecoder

JSONEncoder

__all__

__author__

__builtins__

__doc__

__file__

__name__

__package__

__path__

__version__

_default_decoder

_default_encoder

decoder

dump

dumps

encoder

load

loads

scanner

You can even print the docstring from a class using the syntax like the following example for
"json.dump":

Which should output:

print json.dump.__doc__

"""

Serialize ``obj`` as a JSON formatted stream to ``fp`` (a

 ``.write()``-supporting file-like object).

 If ``skipkeys`` is true then ``dict`` keys that are not basic types

 (``str``, ``unicode``, ``int``, ``long``, ``float``, ``bool``, ``None``)

 will be skipped instead of raising a ``TypeError``.

 If ``ensure_ascii`` is true (the default), all non-ASCII characters in the

 output are escaped with ``\uXXXX`` sequences, and the result is a ``str``

 instance consisting of ASCII characters only. If ``ensure_ascii`` is

 ``False``, some chunks written to ``fp`` may be ``unicode`` instances.

 This usually happens because the input contains unicode strings or the

 ``encoding`` parameter is used. Unless ``fp.write()`` explicitly

 understands ``unicode`` (as in ``codecs.getwriter``) this is likely to

 cause an error.

 If ``check_circular`` is false, then the circular reference check

 for container types will be skipped and a circular reference will

 result in an ``OverflowError`` (or worse).

 If ``allow_nan`` is false, then it will be a ``ValueError`` to

 serialize out of range ``float`` values (``nan``, ``inf``, ``-inf``)

 in strict compliance of the JSON specification, instead of using the

 JavaScript equivalents (``NaN``, ``Infinity``, ``-Infinity``).

 If ``indent`` is a non-negative integer, then JSON array elements and

 object members will be pretty-printed with that indent level. An indent

 level of 0 will only insert newlines. ``None`` is the most compact

 representation. Since the default item separator is ``', '``, the

 output might include trailing whitespace when ``indent`` is specified.

 You can use ``separators=(',', ': ')`` to avoid this.

Source: https://forum.inductiveautomation.com/t/dos-and-donts-when-developing-first-project-with-
ignition/93592/33

 If ``separators`` is an ``(item_separator, dict_separator)`` tuple

 then it will be used instead of the default ``(', ', ': ')`` separators.

 ``(',', ':')`` is the most compact JSON representation.

 ``encoding`` is the character encoding for str instances, default is UTF-8.

 ``default(obj)`` is a function that should return a serializable version

 of obj or raise TypeError. The default simply raises TypeError.

 If *sort_keys* is ``True`` (default: ``False``), then the output of

 dictionaries will be sorted by key.

 To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the

 ``.default()`` method to serialize additional types), specify it with

 the ``cls`` kwarg; otherwise ``JSONEncoder`` is used.

"""

Revision #1
Created 22 September 2024 02:27:10 by Michael Flagler
Updated 22 September 2024 02:34:30 by Michael Flagler

https://forum.inductiveautomation.com/t/dos-and-donts-when-developing-first-project-with-ignition/93592/33
https://forum.inductiveautomation.com/t/dos-and-donts-when-developing-first-project-with-ignition/93592/33

